Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 116, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631065

RESUMO

The development of multiple organ dysfunction syndrome (MODS) following infection or tissue injury is associated with increased patient morbidity and mortality. Extensive cellular injury results in the release of nuclear proteins, of which histones are the most abundant, into the circulation. Circulating histones are implicated as essential mediators of MODS. Available anti-histone therapies have failed in clinical trials due to off-target effects such as bleeding and toxicity. Here, we describe a therapeutic strategy for MODS based on the neutralization of histones by chemically stabilized nucleic acid bio-drugs (aptamers). Systematic evolution of ligands by exponential enrichment technology identified aptamers that selectively bind those histones responsible for MODS and do not bind to serum proteins. We demonstrate the efficacy of histone-specific aptamers in human cells and in a murine model of MODS. These aptamers could have a significant therapeutic benefit in the treatment of multiple diverse clinical conditions associated with MODS.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Proteínas Nucleares/metabolismo , RNA/metabolismo , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Histonas/antagonistas & inibidores , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/prevenção & controle , Proteínas Nucleares/genética , Ligação Proteica , RNA/antagonistas & inibidores , RNA/genética
2.
Mol Ther Nucleic Acids ; 8: 542-557, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918054

RESUMO

A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers.

3.
Methods ; 103: 167-74, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972786

RESUMO

Aptamers are single-stranded DNA or RNA oligonucleotides that can bind with exquisitely high affinity and specificity to target molecules and are thus often referred to as 'nucleic acid' antibodies. Oligonucleotide aptamers are derived through a process of directed chemical evolution called SELEX (Systematic Evolution of Ligands by Exponential enrichment). This chemical equivalent of Darwinian evolution was first described in 1990 by Tuerk & Gold and Ellington & Szostak and has since yielded aptamers for a wide-range of applications, including biosensor technologies, in vitro diagnostics, biomarker discovery, and therapeutics. Since the inception of the original SELEX method, numerous modifications to the protocol have been described to fit the choice of target, specific conditions or applications. Technologies such as high-throughput sequencing methods and microfluidics have also been adapted for SELEX. In this chapter, we outline key steps in the SELEX process for enabling the rapid identification of RNA aptamers for in vivo applications. Specifically, we provide a detailed protocol for the selection of chemically-optimized RNA aptamers using the original in vitro SELEX methodology. In addition, methods for performing next-generation sequencing of the RNAs from each round of selection, based on Illumina sequencing technology, are discussed.


Assuntos
Aptâmeros de Nucleotídeos/síntese química , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/isolamento & purificação , Sequência de Bases , Desenho de Fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...